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1Institut de Ciència i Tecnologia Ambientals and Departament de F�ısica, Universitat Aut�onoma de Barcelona, Barcelona,
Spain, 2School of Science and Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western
Australia, Australia, 3Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany, 4Norwegian Polar
Institute, Fram Centre, Tromsø, Norway, 5MARUM – Center for Marine Environmental Sciences, University of Bremen,
Bremen, Germany, 6Oceans Institute and School of Physics, University of Western Australia, Crawley, Western Australia,
Australia

Abstract The Arctic sea-ice extent reached a record minimum in September 2012. Sea-ice decline
increases the absorption of solar energy in the Arctic Ocean, affecting primary production and the plankton
community. How this will modulate the sinking of particulate organic carbon (POC) from the ocean surface
remains a key question. We use the 234Th/238U and 210Po/210Pb radionuclide pairs to estimate the magni-
tude of the POC export fluxes in the upper ocean of the central Arctic in summer 2012, covering time scales
from weeks to months. The 234Th/238U proxy reveals that POC fluxes at the base of the euphotic zone were
very low (2 6 2 mmol C m22 d21) in late summer. Relationships obtained between the 234Th export fluxes
and the phytoplankton community suggest that prasinophytes contributed significantly to the downward
fluxes, likely via incorporation into sea-ice algal aggregates and zooplankton-derived material. The magni-
tude of the depletion of 210Po in the upper water column over the entire study area indicates that particle
export fluxes were higher before July/August than later in the season. 210Po fluxes and 210Po-derived POC
fluxes correlated positively with sea-ice concentration, showing that particle sinking was greater under
heavy sea-ice conditions than under partially ice-covered regions. Although the POC fluxes were low, a large
fraction of primary production (>30%) was exported at the base of the euphotic zone in most of the study
area during summer 2012, indicating a high export efficiency of the biological pump in the central Arctic.

1. Introduction

Climate change is triggering an unprecedented decline in Arctic sea ice. In September 2012 the sea-ice cover
amounted to less than half of its 1979–2000 baseline [Overland and Wang, 2013]. Such a decrease in ice extent
and thickness [Haas et al., 2008] allows more sunlight to be transmitted through the sea ice, increasing the
absorption of solar energy in the Arctic Ocean [Nicolaus et al., 2012] and affecting sea-ice and upper ocean eco-
systems [Wassmann, 2011]. Net primary production (NPP) increased by 30% between 1998 and 2012 according
to a satellite-based study [Arrigo and van Dijken, 2015]. Yet this kind of approach does not take into account the
productivity of either under-ice phytoplankton or sea-ice algae, even though it can be substantial [Gosselin
et al., 1997; Fortier et al., 2002; Lee et al., 2010; Arrigo et al., 2012; Fern�andez-M�endez et al., 2015]. However, light-
driven increments in NPP will be constrained if nutrient supply to surface waters does not increase considerably
by mixing or upwelling [e.g., Tremblay et al., 2015]. Besides this, enhanced NPP does not necessarily mean larger
export fluxes of particulate organic carbon (POC) to the deep ocean, since the changing Arctic scenario favors a
phytoplankton community structure based on the smallest cells [Li et al., 2009]. Overall, it remains uncertain
how the changes in NPP and plankton community will affect the sinking of POC from the ocean surface, and in
turn contribute to the marine sequestration of CO2 [Honjo et al., 2010; Anderson and Macdonald, 2015].

To date, the Arctic Ocean is considered a weak sink for atmospheric CO2, accounting for �6% of the global oce-
anic uptake [Gruber et al., 2009]. An essential component of the ocean carbon sink is the ‘‘biological pump’’
driven by the export of organic particles from the ocean surface to its interior [Falkowski et al., 1998]. During the
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productive season, the surface downward fluxes of POC are widely heterogeneous in the Arctic, reaching higher
values (>30 mmol C m22 d21) over the shelves [e.g., Cochran et al., 1995b; Lepore et al., 2007] in comparison to
the central Arctic (<5 mmol C m22 d21) [e.g., Moran et al., 1997; Cai et al., 2010]. However, in summer 2012, a
widespread deposition of ice algal biomass on the seafloor (>3000 m, median estimate of 750 mmol C m22)
was observed in the central Arctic associated with rapid ice melt [Boetius et al., 2013].

The export efficiency is defined as the ratio between export and production, which indicates the strength of
the biological pump [Buesseler and Boyd, 2009]. A recent model study reports a high annual mean export
efficiency of >30% in Arctic waters [Henson et al., 2015]. Nevertheless, primary production and export data
are very scarce, especially in the interior basins [Gustafsson and Andersson, 2012; Matrai et al., 2013]. Indeed,
the temporal mismatch between the measurement of production and export, combined with the existence
of a long lag period between both processes in the Arctic (30–40 days), makes the assessment of the export
efficiency on a seasonal scale difficult [Henson et al., 2015].

The radionuclide pairs 234Th/238U and, to a lesser extent, 210Po/210Pb have been used as proxies for POC
export since the 1990s [Buesseler et al., 1992; Shimmield et al., 1995], but very few studies have used
both pairs together [Verdeny et al., 2009; Stewart et al., 2011; Wei et al., 2011; Le Moigne et al., 2013a].
Several authors have recommended the simultaneous use of 234Th/238U and 210Po/210Pb since they
cover different time scales, from weeks to months, respectively, and 234Th and 210Po have different bio-
geochemical behaviors, providing complementary information on POC export fluxes [Friedrich and
Rutgers van der Loeff, 2002; Verdeny et al., 2009; Stewart et al., 2011].

In this study, we aim to estimate the magnitude of the POC fluxes at the bottom of the euphotic zone and
within the upper mesopelagic layer in the central Arctic during the record sea-ice minimum in 2012, as well
as identify mechanisms that control particle export by means of 234Th/238U and 210Po/210Pb. The use of
both pairs may shed light on the apparent mismatch between the low 234Th-based export production esti-
mates [Cai et al., 2010] and the benthic observations of massive sea-ice algae deposits [Boetius et al., 2013]
in the central Arctic. It might also give a hint of the trend that POC fluxes may follow as the sea ice contin-
ues to decline. To this purpose we:

1. Quantify the POC export fluxes at the bottom of the euphotic zone, 50, 100, and 150 m on short-term
and seasonal scales by using the 234Th/238U and 210Po/210Pb pairs.

2. Identify potential relationships between sea-ice conditions, phytoplankton community, and particle export.
3. Assess the export efficiency combining the export estimates at the bottom of the euphotic zone with

daily, weekly, and annual NPP estimates.

2. Materials and Methods

2.1. Study Area
The sampling was performed from 11 August to 28 September 2012 during the ARK-XXVII/3 expedition in
the Eurasian Basin of the central Arctic (2 August to 8 October 2012; R/V Polarstern [Boetius, 2013]). The sur-
vey coincided with a new record low of sea-ice cover since the beginning of satellite imagery in 1978 [Par-
kinson and Comiso, 2013]. The specific locations and dates of the sea-ice stations are given in Figure 1 and
Table 1.

2.2. Total 234Th/238U and 210Po/210Pb
Total 234Th, 210Po, and 210Pb activities were determined from seawater samples collected using Niskin bot-
tles attached to a CTD rosette. Twelve depth vertical profiles from 10 to 400 m were taken, with higher reso-
lution in the upper 150 m of the water column.

Total 234Th activities were determined from 4 L of seawater at nine stations. Additionally, replicates of deep
samples (1500–3000 m) were collected for calibration purposes [Rutgers van der Loeff et al., 2006]. The sam-
ples were processed following the MnO2 co-precipitation technique [Buesseler et al., 2001] using 230Th as a
chemical yield tracer [Pike et al., 2005]. Briefly, the precipitates were filtered through QMA quartz fiber filters,
dried overnight at 508C, and prepared for beta counting. The counting was done on board using low back-
ground beta counters (Risø National Laboratories, Denmark). Samples were remeasured after 7 months to
quantify background activities. 230Th recoveries were determined in all filters by inductively coupled plasma
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mass spectrometry (ICP-MS) as described in Roca-Mart�ı et al. [2016]. The average chemical recovery was
94 6 4% (n 5 107). The parent 238U activity was derived from salinity using the relationship given by Owens
et al. [2011]. Stations 4–6 had salinities of 30.0–32.5 from 10 to 30 m (n 5 15), falling below the range used
by Owens et al. [2011]. For these samples, we also applied the U-salinity relationship given by Not et al.
[2012] determined from sea ice, surface seawater, and sea-ice brine samples, covering a wide salinity range
(0–135). A difference of only 1.1% in 238U activity, which is lower than its associated uncertainty (1.9–2.3%),
was obtained using the two relationships, validating the use of Owens’s relationship in the present study.
The 234Th activity uncertainties were always �6%, which include those uncertainties associated with count-
ing, detector background and calibration, and ICP-MS measurements.

Total 210Po and 210Pb activities were determined from 11 L of seawater at seven stations using the
cobalt-ammonium pyrrolidine dithiocarbamate (Co-APDC) coprecipitation technique [Fleer and Bacon,
1984]. Samples were immediately acidified after collection with HCl to pH <2 and spiked with stable Pb
and 209Po as chemical yield tracers. Cobalt nitrate and APDC solutions were added after at least 1 day of
isotope equilibration. Samples were filtered through 0.2 mm membrane filters and stored for later proc-
essing at the home laboratory. The filters were digested using concentrated HNO3 and samples were
reconstructed with 1 M HCl. 210Po and 210Pb were separated by auto-deposition of polonium onto silver
discs during 6 h [Flynn, 1968]. The silver discs were then counted by alpha spectrometry using passi-
vated implanted planar silicon (PIPS) alpha detectors (Canberra, USA) and silicon surface barrier (SSB)
alpha detectors (EG&G Ortec, USA). Solutions were replated and passed through an anion exchange
resin (AG 1-X8) to ensure the complete elimination of polonium from samples [Rigaud et al., 2013]. Sam-
ples were respiked with 209Po and stored for 9–11 months for later determination of 210Pb via 210Po
ingrowth. At that time, samples were plated and counted once more by alpha spectrometry. 210Pb and

Figure 1. Location of sea-ice stations sampled during the IceArc cruise (ARK-XXVII/3, August–September 2012) (red dots). Average sea-ice
concentration in September 2012. Contour lines represent the sea-ice extent in February (red) and July (yellow) 2012. Sea-ice concentra-
tion data were obtained from http://www.meereisportal.de [Spreen et al., 2008].
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210Po activities at sampling time were calculated applying in-growth, decay, and recovery corrections
following Rigaud et al. [2013]. Two aliquots from each sample were taken before the first and last plat-
ings to determine the chemical recovery of stable Pb by inductively coupled plasma optical emission
spectrometry (ICP-OES). The average recovery was 87 6 9% (n 5 83). The activity uncertainties were on
average 7% for 210Pb and 16% for 210Po, which include those uncertainties associated with counting,
detector background, and 209Po activity. The larger uncertainties of 210Po are due to the time elapsed
between sampling and the first Po plating (>80 days). All data of total 234Th, 238U, 210Po, and 210Pb activ-
ities are available at http://doi.pangaea.de/10.1594/PANGAEA.858790.

2.3. Particulate Fraction
Large (>53 mm) particles for analyses of 234Th, 210Po, 210Pb, POC, and particulate organic nitrogen
(PON) were collected using in situ pumps (ISP, Challenger Oceanic, UK). Four ISP were deployed at each
station at 25, 50, 100, and 150 m, filtering on average 1500 L. Particles were retained using 53 mm pore
size nylon mesh screens and rinsed with filtered seawater. After homogenization, the sample was sub-
divided into two aliquots: one was filtered through precombusted QMA filters to analyze 234Th, POC,
and PON on the same filter, and the other aliquot was filtered through QMA filters to analyze 210Po and
210Pb. Swimmers observed by naked eye were picked from all samples. The activity of 234Th in particles

Table 1. Location and Date of the Stations Sampled During the ARK-XXVII/3 Cruise Together With Information on Oceanographic and
Sea-Ice Conditions, Chl-a Inventory at 30 m Depth, Phytoplankton Classifications by Size and Group, and NPP Estimates (See Text for
Further Details)a

Station 1 2 3 4 5 6 7 8 9

Polarstern station # PS80/224 PS80/237 PS80/255 PS80/277 PS80/323 PS80/335 PS80/349 PS80/360 PS80/384
Longitude (8E) 31.19 75.99 110.11 129.83 131.12 123.47 60.97 57.07 17.59
Latitude (8N) 84.03 83.92 83.08 82.89 81.93 85.17 87.93 88.80 84.37
Date (2012) 9–11 Aug. 14–16 Aug. 20–22 Aug. 25–26 Aug. 4–5 Sept. 7–9 Sept. 18–19 Sept. 22–23 Sept. 28–29 Sept.
Euphotic zone

depth (m)b
24 29 30 29 33 29 15 7 27

Mixed layer
depth (m)

16 20 18 22 20 25 29 30 22

Sea-ice
thickness (m)b,c

1.0 1.3 0.9 0.9 0.8 0.7 1.6 1.8 1.2

Sea-ice
concentration (%)b,c

80 80 70 80 60 50 100 100 100

Chl-a inventory
(mg m22)

4.8 22.8 8.9 7.0 8.9 11.2 6.1 3.3 2.5

Phytoplankton Size
(% Chl-a Biomass)

Microplankton 36 29 38 54 36 14 34 ndd 39
Nanoplankton 22 0 2 13 4 28 44 nd 32
Picoplankton 42 71 60 33 60 58 22 nd 29
Phytoplankton Group

(% Chl-a Biomass)
Diatoms 19 5 4 44 27 3 23 nd 22
Dinoflagellates_1 0 0 8 2 0 0 0 nd 0
Dinoflagellates_2 8 0 9 0 2 11 1 nd 12
Haptophytes_3 21 0 0 4 0 26 61 nd 19
Haptophytes_4 0 0 8 5 3 3 2 nd 4
Cryptophytes 0 0 1 18 10 0 0 nd 0
Prasinophytes_1 51 33 8 26 27 35 12 nd 22
Prasinophytes_2 0 61 61 0 28 0 0 nd 0
Pelagophytes 0 0 1 1 3 0 0 nd 21
Chlorophytes 0 0 0 0 0 21 1 nd 0
NPP Estimates

(mmol C m22 d21)
In situ 3.3 2.7 1.3 0.5 5.0 2.3 0.2 0.1 nd
One week 2.3 2.3 2.2 3.5 1.8 1.9 0.6 0.5 nd
Two weeks 2.4 2.5 2.2 3.3 2.2 2.3 0.8 0.6 nd
Annual 3.3 4.8 2.1 2.9 5.6 3.2 11.9 9.9 7.9

a234Th/238U, 210Po/210Pb, and sediment traps [Lalande et al., 2014] were used to estimate POC export fluxes at all the stations, except
at stations 5 and 9 for 210Po/210Pb.

bData from Fern�andez-M�endez et al. [2015].
cData from Katlein et al. [2014].
dnd, no available data.
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was measured by beta counting as described for the water samples. POC and PON were determined
with an EuroVector Elemental Analyzer, pretreating the filters with diluted HCl [Knap et al., 1996]. The
results were corrected for POC and PON blanks (1.7 6 0.1 and 0.35 6 0.06 mmol, respectively), repre-
senting on average 5 and 8% of the POC and PON measurements, respectively. The filters for 210Po and
210Pb determination were spiked with 209Po and stable Pb, digested using a mixture of concentrated
HNO3, HCl, and HF, evaporated to dryness and reconstructed with 1 M HCl. Samples were processed
and measured by alpha spectrometry as described for the water samples. All data of particulate 234Th,
210Po, 210Pb, and organic carbon, and nitrogen concentrations are available at http://doi.pangaea.de/
10.1594/PANGAEA.858790.

2.4. Pigments
One liter of seawater samples were taken from Niskin bottles attached to the CTD rosette from three to four
depths in the upper 30 m at eight stations. The samples were immediately filtered on GF/F filters, frozen in
liquid nitrogen, and stored at 2808C until further analyses by high-performance liquid chromatography
(HPLC) at the home laboratory. The samples were measured using a Waters 600 controller equipped with
an auto sampler (717 plus), a photodiode array detector (2996), a fluorescence detector (2475), and the
EMPOWER software. Fifty microliter of internal standard (canthaxanthin) and 1.5 mL acetone were added to
each filter vial and then homogenized for 20 s in a Precellys tissue homogenizer. After centrifugation the
supernatant liquids were filtered through 0.2 mm PTFE filters (Rotilabo) and placed in Eppendorf cups.
Aliquots of 100 mL were transferred to the auto-sampler (48C), premixed with 1 M ammonium acetate solu-
tion in a 1:1 volume ratio just prior to analysis, and injected onto the HPLC-system. Pigments were analyzed
by reverse-phase HPLC using a VARIAN Microsorb-MV3 C8 column (4.6 3 100 mm) and HPLC-grade solvents
(Merck). Solvent A consisted of 70% methanol and 30% 1 M ammonium acetate, and solvent B contained
100% methanol. The gradient was modified after Barlow et al. [1997]. Eluted pigments were detected by
absorbance (440 nm) and fluorescence (Ex: 410 nm, Em: >600 nm). Pigments were identified by comparing
their retention times with those of pure standards. Additional confirmation for each pigment was done by
comparing the sample spectra with online diode array absorbance spectra between 390 and 750 nm stored
in the library. Pigment concentrations were quantified based on peak areas of external standards, which
were spectrophotometrically calibrated using extinction coefficients published by Bidigare [1991] and Jeffrey
et al. [1997]. The taxonomic structure of the phytoplankton groups (diatoms, dinoflagellates_1, dinoflagel-
lates_2, haptophytes_3, haptophytes_4, cryptophytes, prasinophytes_1, prasinophytes_2, pelagophytes,
and chlorophytes) was calculated from marker pigment ratios using the CHEMTAX program [Mackey et al.,
1996]. Pigment ratios were constrained as suggested by Higgins et al. [2011] based on molecular analyses of
18S rDNA [Kilias et al., 2013] and microscopic examination of representative samples. Phytoplankton size
classes (micro-, nano-, and picoplankton) were estimated according to Uitz et al. [2006] and Hirata et al.
[2011], summarized by Taylor et al. [2011]. Microplankton corresponded to phytoplankton with size
between 20 and 200 mm, nanoplankton between 2 and 20 mm, and picoplankton <2 mm. The phytoplank-
ton classifications by group and size are expressed as percentage of total chlorophyll a (Chl-a) biomass.

2.5. Primary Production
In situ NPP was measured at eight stations using the 14C uptake method [Steemann Nielsen, 1952], with
minor modifications as described in Fern�andez-M�endez et al. [2015]. Seawater, melted sea-ice cores and
melt pond samples (one 200 mL sample per environment and station) were spiked with 0.1 mCi mL21 of 14C
labeled sodium bicarbonate (Moravek Biochemicals, USA) and incubated for 12 h at 21.38C under different
scalar irradiances (0–420 mmol photons m22 s21). Depth-integrated in situ rates were calculated for each
environment as a function of the available photosynthetically active radiation (PAR) using the photosyn-
thetic parameters obtained in the photosynthesis versus irradiance curves. Water column production was
integrated over the euphotic zone (1% of incoming PAR) and sea-ice algae production over the length of
the ice cores retrieved.

At the same stations we calculated the integrated amount of NPP that potentially occurred 1 and 2 weeks
before sampling using the Central Arctic Ocean Primary Productivity (CAOPP) model [Fern�andez-M�endez
et al., 2015]. This model calculates NPP from incident light and sea-ice conditions based on different
remote-sensing data sets on the basis of photosynthesis-irradiance curves measured during the cruise. NPP
was calculated for each day during the 14 days prior to sampling, summed up to integrate values for the 1
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and 2 week period before sampling, and divided by 7 and 14 days, respectively, to obtain average daily
rates for these two periods.

Annual new NPP was calculated from the nitrate drawdown in the mixed layer since previous winter at
nine stations, as described in Fern�andez-M�endez et al. [2015]. The annual total inorganic nitrogen uptake
was then transformed to carbon units using the Redfield ratio 106C:16N [Smith et al., 1997; Codispoti
et al., 2013], giving annual new NPP estimates for sea ice and water column during the Arctic productive
season. To calculate an average daily rate, we assumed a productive season of 120 days [Gradinger et al.,
1999]. Although most of the new NPP occurs before late summer, we note that these estimates may be
underestimated, especially for the first stations sampled in August. This method assumes that lateral
input of nitrate from rivers or shelves is negligible, which should be the case of the present study
(>818N) due to its consumption in Arctic shelf waters [Le Fouest et al., 2013]. Further, this method does
not take into consideration nitrification and upward flux of nitrate, which are assumed to have a rela-
tively small contribution to the nitrate concentrations in the mixed layer in comparison with the biologi-
cal uptake.

3. Results

3.1. Study Area
Sea-ice conditions, phytoplankton communities, and primary production rates in the study area are
described below and summarized in Table 1.
3.1.1. Oceanographic and Sea-Ice Conditions
Stations were located over the deep Arctic (>3000 m) in the Nansen (stations 1–3 and 9) and Amundsen
Basins (stations 4–8, Figure 1). The sea-ice conditions encountered during the expedition are described in
Katlein et al. [2014]. Stations located north of 878N (stations 7 and 8) had multiyear ice, 1.6–1.8 m thick,
while the rest consisted of degraded first-year ice of 0.7–1.3 m. The sea-ice concentration varied from 50
to 80% at stations 1–6, but it was 100% at those stations visited in mid-late September (stations 7–9, Table
1). The coverage of melt-ponds ranged from 10 to 50% [Boetius et al., 2013]. The euphotic zone was on
average 25 m deep and was nutrient-depleted by phytoplankton consumption: (i) silicate-depleted at sta-
tions 1–3; (ii) nitrate-depleted at stations 4 and 5; and (iii) silicate, nitrate, and phosphate-depleted at sta-
tions 6–9 [Fern�andez-M�endez et al., 2015]. The mixed layer was on average 22 m thick and was defined by
the depth where density increased from its surface value to 20% of the difference between 100 m and the
surface [Shaw et al., 2009] using the CTD profiles obtained during the cruise (doi:10.1594/PAN-
GAEA.802904). The winter mixed layer depth was found at around 55 m [Fern�andez-M�endez et al., 2015]
above the lower halocline (salinity range: 33.5–34.5) [Rudels, 2009], which reached depths down to 115 m.
The potential temperature maximum indicative of the Atlantic Water core was found between 180 and
290 m. The Arctic intermediate waters as well as deep and bottom waters were present below the warm
Atlantic layer.
3.1.2. Biology
The Chl-a inventories in the upper 30 m of the water column were on average 8.4 6 6.1 mg m22, with a
maximum at station 2 (22.8 mg m22) and a minimum at station 9 (2.5 mg m22). The phytoplankton commu-
nity was picoplankton dominated at many stations (1, 2, 3, 5, and 6), accounting for �40–70% of the total
Chl-a biomass. At those stations prasinophytes were the most relevant group with a relative biomass of up
to 95%. Large cells dominated the community at station 4 with a significant contribution from diatoms
(44%), while nanoplankton prevailed at station 7 with a dominance of haptophytes (63%). Finally, station 9
had a similar biomass distribution between size classes (Table 1).

The integrated in situ NPP rates in the euphotic zone, sea ice, and melt ponds ranged from 0.1 mmol C m22

d21 at the northernmost station (8) to 5.0 mmol C m22 d21 at the southernmost station (5). In situ NPP was
highest at the picoplankton-dominated stations (>1.3 mmol C m22 d21). The daily NPP estimates during
1 and 2 weeks prior to sampling were higher than the in situ estimates by a factor of 2–7 at stations 3, 4, 7,
and 8, while they were a factor of 3 lower at station 5. These estimates were comparable at stations 1, 2,
and 6. The annual new primary production estimates compared well with the in situ, 1 and 2 week daily
estimates from stations 1–6. However, north of 878N (stations 7 and 8) the annual estimates were higher
than the average of the other estimates by a factor >20 (�10–12 mmol C m22 d21, Table 1).
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3.2. Total 234Th/238U and 210Po/210Pb
3.2.1. Seawater Profiles
The profiles of the total activities of 234Th and 238U, and 210Po and 210Pb are illustrated in Figure 2.

The specific activities of each radionuclide ranged from 1.54 6 0.06 to 2.59 6 0.13 dpm L21 for 234Th,
2.04 6 0.05 to 2.44 6 0.05 dpm L21 for 238U, 0.7 6 0.3 to 5.4 6 0.5 dpm 100 L21 for 210Po, and 0.84 6 0.09 to
7.3 6 0.4 dpm 100 L21 for 210Pb. Within the upper 25 m of the water column, significant deficits of 234Th
(i.e., 234Th/238U< 0.9, given uncertainties) were observed at stations 1, 5, and 6, while significant deficits of
210Po (i.e., 210Po/210Pb< 0.8, given uncertainties) were detected at all the stations. Below 25 m depth, defi-
cits of 234Th were detected at one single depth at stations 5 and 9 (at 100 and 150 m, respectively), but defi-
cits of 210Po were found at every station usually at several depths (30–150 m). Excesses of 234Th (i.e.,
234Th/238U> 1.1) were not observed at any profile below 25 m, whereas excesses of 210Po (i.e.,
210Po/210Pb> 1.2) were observed at four stations (1, 2, 4, and 6).

Station 1 showed deficits of 234Th and 210Po within the upper 50 m: 11500 6 2100 and 770 6 120 dpm m22,
respectively. Station 6 also showed deficits of both isotopes, down to 25 m for 234Th (160 6 40 dpm m22)
and 150 m for 210Po (930 6 200 dpm m22). At five stations (2, 3, 4, 7, and 8) 234Th was not significantly
depleted in the upper water column. On the contrary, at those stations the integrated 210Po deficits in the
upper water column (50–150 m) ranged from 130 6 150 to 1640 6 220 dpm m22. The integrated excesses
of 210Po observed at stations 2 (30 and 100–300 m) and 4 (15, 30–50, 150, and 400 m) exceeded the inte-
grated deficits observed in the surface water. Finally, at stations 5 and 9 (only 234Th sampling), 234Th was in
equilibrium with 238U throughout the upper 400 m with only a few exceptions.
3.2.2. 234Th and 210Po Fluxes
The 234Th and 210Po fluxes (FD) are attributed to scavenging of 234Th and 210Po onto sinking particles. The
fluxes were calculated using a steady state (SS) model, neglecting advective and diffusive fluxes [Buesseler
et al., 1992]:

FD5kD AP2ADð Þ;

where D stands for ‘‘daughter’’ (234Th or 210Po) and P for ‘‘parent’’ (238U or 210Pb, respectively). kD is the
decay constant of 234Th (0.029 day21) or 210Po (0.0050 day21), and (AP 2 AD) is the integrated daughter

Figure 2. Vertical activity profiles for 234Th (red solid line) and 238U (dotted line) (top) and for 210Po (green solid line) and 210Pb (dotted line) (bottom), from 10 to 400 m depth. 238U was
derived from salinity [Owens et al., 2011].
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deficit with respect to its parent (dpm
m22). The fluxes calculated down to 25,
50, 100, and 150 m are listed in Table 2.

The 234Th fluxes were negligible or very
low at five out of nine stations (2, 3, 4, 7,
and 8). At stations 1, 5, and 6, the 234Th
fluxes averaged 175 6 19 dpm m22 d21

at 25 m, 210 6 100 dpm m22 d21 at
50 m, 280 6 140 dpm m22 d21 at 100 m,
and 400 6 200 dpm m22 d21 at 150 m.
At station 9 the already low 234Th flux at
25 m (90 6 40 dpm m22 d21) became
negligible in deeper waters. The 210Po
fluxes were significant at all the stations,
averaging 1.8 6 1.1 dpm m22 d21 at
25 m, 2.6 6 1.5 dpm m22 d21 at 50 m,
3 6 2 dpm m22 d21 at 100 m, and 3 6 3
dpm m22 d21 at 150 m. The 210Po fluxes
did not decrease with depth at the major-
ity of stations (1, 3, 6, 7, and 8), whereas
at stations 2 and 4 the fluxes became
negligible at 100–150 m.

3.3. Particulate Fraction
Particulate 234Th, 210Po, 210Pb, and
organic carbon, and nitrogen concentra-
tions in large particles are given in Table
3, as well as the 210Po/210Pb and molar C/
N ratios.

The mean 234Th activities in particles
decreased with depth, ranging from �1
dpm 100 L21 at 25 m to �0.3 dpm
100 L21 at 150 m. 210Po activities were on
average �0.04 dpm 100 L21 at 25 m and

�0.02 dpm 100 L21 below that depth, while 210Pb activities were �0.06 dpm 100 L21 at 25 and 50 m, and
�0.02 dpm 100 L21 at 100 and 150 m. The variation between stations was large, with deviations from those
means of >50% for 234Th, >80% for 210Po, and >100% for 210Pb. Only about 0.3% of the total activity of
234Th in seawater, 1.1% of 210Po and 1.7% of 210Pb was associated with large particles. The maximum partic-
ulate activities were found at stations 2 and 3 and the minimum at stations 7 and 8 (negligible in some
instances for 210Po and 210Pb). The 210Po/210Pb ratios ranged from 0.2 to 6 (average: 1.2 6 1.4, n 5 18), vary-
ing considerably between stations and depths.

The POC and PON concentrations were highest at 25 m, averaging 0.23 6 0.08 and 0.028 6 0.011 mmol L21

(n 5 8), respectively. Below that depth the concentrations decreased by a factor of 3. The mean C/N ratio
was similar at all the investigated depths, averaging 8.8 6 1.9 (n 5 34).

Table 4 displays the POC/234Th and POC/210Po ratios (C/Th and C/Po) at 25, 50, 100, and 150 m. The average
ratios at the different horizon depths ranged from 17 to 40 lmol C dpm21 for C/Th and from 300 to 1100
lmol C dpm21 for C/Po. The ratios did not change significantly with depth (Kruskal-Wallis test, P> 0.05).

3.4. POC Fluxes
The POC fluxes were calculated multiplying the 234Th and 210Po fluxes derived from the SS model by the C/
Th and C/Po ratios in large particles, respectively (Table 4).

The 234Th-derived POC fluxes ranged from negligible to 10 mmol C m22 d21 and averaged 1.3–4 mmol C
m22 d21 at 25, 50, 100, and 150 m. The 210Po-derived POC fluxes ranged from negligible to 6.3 mmol C

Table 2. 234Th and 210Po Export Fluxes Assuming Steady State Conditions at
25, 50, 100, and 150 m

Station Depth (m)

234Th Fluxes
(dpm m22 d21)

210Po Fluxes
(dpm m22 d21)

1 25 200 6 50 2.1 6 0.4
50 330 6 60 3.9 6 0.6

100 230 6 130 4.3 6 1.0
150 280 6 190 1.8 6 1.5

2 25 40 6 50 1.6 6 0.3
50 70 6 70 2.4 6 0.4

100 100 6 120 1.3 6 0.9
150 200 6 200 22.2 6 1.5

3 25 220 6 50 0.2 6 0.3
50 10 6 70 0.8 6 0.4

100 20 6 120 2.5 6 0.7
150 70 6 200 4.5 6 1.0

4 25 270 6 40 2.2 6 0.6
50 2160 6 60 1.0 6 0.7

100 2160 6 120 0.8 6 0.8
150 2220 6 180 20.4 6 1.0

5 25 170 6 40 nd
50 190 6 60 nd

100 440 6 110 nd
150 660 6 180 nd

6 25 160 6 40 0.9 6 0.3
50 130 6 60 2.1 6 0.4

100 180 6 120 3.2 6 0.7
150 310 6 190 4.7 6 1.0

7 25 20 6 50 3.4 6 0.4
50 90 6 70 5.0 6 0.5

100 90 6 140 7.2 6 0.8
150 160 6 200 8.2 6 1.1

8 25 0 6 60 2.5 6 0.4
50 250 6 80 3.0 6 0.5

100 0 6 120 3.7 6 0.9
150 20 6 190 4.9 6 1.1

9 25 90 6 40 nd
50 60 6 70 nd

100 2110 6 140 nd
150 70 6 190 nd

nd, no available data.
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m22 d21 and averaged 0.8-3 mmol C m22 d21 at the same depths. The POC fluxes estimated using the two
proxies were not significantly different considering all depths together, or each depth individually (Wilcoxon
test, P> 0.05).

4. Discussion

In this study we have used two pairs of radionuclides, 234Th/238U and 210Po/210Pb, as tools to estimate POC
fluxes in the Eurasian Basin of the Arctic Ocean in summer 2012. Deficits of 234Th and 210Po are attributed
to particle export, while the excesses of these radionuclides evidence their release from sinking particles by
means of remineralization or particle disaggregation into the suspended pool. Their simultaneous applica-
tion allows integrating a temporal scale over a span of weeks (234Th mean life 5 35 days) to months (210Po
mean life 5 200 days).

4.1. 234Th/238U
4.1.1. 234Th Export Fluxes
234Th export fluxes were calculated using a SS model because the stations were not reoccupied during the
expedition. Yet in a review study Savoye et al. [2006] did not find significant differences between the SS and
nonsteady state (NSS) models at low flux rates (<800 dpm m22 d21), which is the case of the present work.

Significant 234Th fluxes within the upper 150 m of the water column were obtained at stations 1, 5, and 6,
and at specific depths at some other stations (Table 2). The 234Th fluxes ranged from negligible to 660 dpm

Table 3. Particulate 234Th, 210Po, 210Pb, Organic Carbon, and Nitrogen Concentrations, 210Po/210Pb Ratios and Molar C/N Ratios in Par-
ticles >53 lm

Station Depth (m)
Part. 234Th

(dpm 100 L21)
Part. 210Po

(dpm 100 L21)
Part. 210Pb

(dpm 100 L21) 210Po/210Pb
POC

(lmol C L21)
PON

(lmol N L21) C/N

1 15 0.45 6 0.03 0.026 6 0.003 0.0042 6 0.0012 6 6 2 0.25 0.038 6.6
50 nd nd nd nd nd nd nd
90 0.335 6 0.019 0.008 6 0.003 0.0144 6 0.0018 0.6 6 0.2 0.074 0.0092 8.1

190 0.138 6 0.008 0.011 6 0.002 0.0057 6 0.0011 1.8 6 0.5 0.034 0.0054 6.3
2 25 nd nd nd nd nd nd nd

50 1.71 6 0.12 0.032 6 0.006 0.031 6 0.003 1.0 6 0.2 0.23 0.034 6.7
100 1.86 6 0.12 0.120 6 0.011 0.073 6 0.004 1.6 6 0.2 0.12 0.020 6.3
150 0.89 6 0.06 0.050 6 0.007 0.055 6 0.004 0.91 6 0.14 0.042 0.0068 6.1

3 25 1.63 6 0.09 0.066 6 0.010 0.217 6 0.010 0.30 6 0.05 0.27 0.033 8.1
50 1.60 6 0.11 0.054 6 0.014 0.221 6 0.011 0.24 6 0.07 0.15 0.020 7.8

100 0.215 6 0.012 <0.003 0.039 6 0.003 0.032 0.0043 7.4
150 0.51 6 0.02 0.035 6 0.006 0.040 6 0.004 0.9 6 0.2 0.087 0.010 8.5

4 25 0.55 6 0.03 0.025 6 0.003 0.044 6 0.003 0.57 6 0.08 0.28 0.029 9.8
50 0.47 6 0.03 0.015 6 0.003 0.031 6 0.002 0.47 6 0.12 0.036 0.0056 6.4

100 0.276 6 0.010 <0.003 0.0152 6 0.0016 0.097 0.014 7.0
150 0.43 6 0.02 0.007 6 0.003 0.023 6 0.002 0.31 6 0.15 0.058 0.0078 7.5

5 25 1.50 6 0.10 nd nd nd 0.38 0.047 8.0
50 0.88 6 0.06 nd nd nd 0.14 0.016 8.5

100 0.414 6 0.016 nd nd nd 0.097 0.011 9.2
150 0.58 6 0.03 nd nd nd 0.061 0.0075 8.2

6 25 1.25 6 0.08 0.077 6 0.006 0.106 6 0.005 0.73 6 0.06 0.15 0.014 11
50 0.250 6 0.014 0.006 6 0.003 0.026 6 0.002 0.21 6 0.12 0.025 0.0025 10

100 0.094 6 0.005 <0.003 0.008 6 0.002 0.015 0.0014 10
150 0.096 6 0.009 0.013 6 0.003 0.0059 6 0.0016 2.2 6 0.8 0.012 0.00090 14

7 25 0.42 6 0.02 0.0126 6 0.0018 0.0076 6 0.0014 1.7 6 0.4 0.23 0.023 10
50 0.062 6 0.007 <0.003 <0.003 0.029 0.0028 11

100 0.061 6 0.009 <0.003 0.0040 6 0.0018 0.088 0.0074 12
150 0.078 6 0.006 0.009 6 0.003 <0.003 0.036 0.0029 12

8 25 0.51 6 0.02 0.009 6 0.003 0.010 6 0.002 0.9 6 0.3 0.16 0.020 8.1
50 0.286 6 0.016 0.008 6 0.003 0.026 6 0.003 0.31 6 0.13 0.049 0.0051 9.6

100 0.133 6 0.014 <0.003 0.012 6 0.003 0.080 0.0070 11
150 0.100 6 0.008 <0.003 0.0040 6 0.0018 0.032 0.0040 8.2

9 25 1.34 6 0.10 nd nd nd 0.15 0.020 7.4
50 0.64 6 0.03 nd nd nd 0.088 0.0091 9.7

100 0.229 6 0.011 nd nd nd 0.069 0.0077 9.0
150 0.18 6 0.02 nd nd nd 0.059 0.0064 9.3

nd, no available data.
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m22 d21, averaging 120 6 140 dpm m22 d21 (n 5 36). Our results are 1 order of magnitude lower than the
234Th flux average reported by Le Moigne et al. [2013b] for the world ocean (1200 6 900 dpm m22 d21; 75–
210 m; n 5 421). Previous research conducted in the central Arctic, mainly during summer, has also revealed
low export fluxes escaping from the ocean surface (Figure 3). Cai et al. [2010] reported an average of
90 6 300 dpm m22 d21 (n 5 26) in the most extensive study of 234Th over the central basins to date, and
Moran et al. [1997] and Gustafsson and Andersson [2012] reported similar flux averages of 190 6 140 dpm
m22 d21 (n 5 7) and 130 6 100 dpm m22 d21 (n 5 3), respectively. Le Moigne et al. [2015] reported 234Th
fluxes of 140 6 210 dpm m22 d21 in the ice-covered Fram Strait, which is also in line with our results. Never-
theless, other studies have reported high 234Th export fluxes (>2000 dpm m22 d21) at specific locations in
the Canada Basin [Ma et al., 2005], although they are more typical of the shelf environment [e.g., Coppola
et al., 2002; Lepore et al., 2007] (Figure 3). Overall, the 234Th flux data presented here and the limited data
available to date illustrate the central Arctic basins as deserts in terms of particle export during summer.
4.1.2. 234Th-Derived POC Export Fluxes
The mean 234Th-derived POC export fluxes measured in the upper 150 m were 3 6 3 mmol C m22 d21

(n 5 34), with a maximum of 10 mmol C m22 d21 (Table 4). At the bottom of the euphotic zone (�25 m)
the fluxes ranged from negligible to 7 mmol C m22 d21 (average: 2 6 2 mmol C m22 d21, n 5 8). These
results are in very good agreement with the POC fluxes measured with cylindrical sediment traps (Hydro-
Bios, Kiel, Germany) deployed under the ice during periods of 24–53 h from station 1 to 9 [Lalande et al.,
2014]. The sediment trap results ranged from 0.4 to 9 mmol C m22 d21 (average: 3 6 3 mmol C m22 d21,
n 5 9). The in situ NPP rates showed positive correlations with 234Th fluxes at 25 m (P< 0.05; Spearman cor-
relation coefficient, q 5 0.83; n 5 8), 234Th-derived POC fluxes at 25 m (P< 0.05; q 5 0.78; n 5 7) and

Table 4. Particulate C/Th and C/Po Ratios and POC Fluxes Derived From 234Th and 210Po

Station Depth (m) C/Th (lmol C dpm21) C/Po (lmol C dpm21)

POC Fluxes (mmol C m22 d21)

234Th-Derived 210Po-Derived

1 15 56 6 4 970 6 100 7 6 2 1.2 6 0.4
50 nd nd nd nd
90 22.1 6 1.3 900 6 400 5 6 3 4 6 2

190 25.0 6 1.5 330 6 70 10 6 6 0.1 6 0.7
2 25 nd nd nd nd

50 13.2 6 0.9 700 6 120 0.9 6 0.9 1.7 6 0.4
100 6.7 6 0.5 104 6 9 0.7 6 0.8 0.13 6 0.09
150 4.7 6 0.3 83 6 12 0.9 6 0.9 20.19 6 0.13

3 25 16.3 6 0.9 400 6 60 20.4 6 0.8 0.06 6 0.14
50 9.6 6 0.6 280 6 80 0.1 6 0.7 0.23 6 0.14

100 14.8 6 0.8 0 6 2
150 16.9 6 0.8 250 6 40 1 6 3 1.1 6 0.3

4 25 51 6 3 1140 6 140 24 6 2 2.5 6 0.7
50 7.7 6 0.4 250 6 60 21.2 6 0.5 0.3 6 0.2

100 35.2 6 1.3 26 6 4
150 13.6 6 0.6 800 6 400 23 6 2 20.3 6 0.9

5 25 25.1 6 1.7 nd 4.3 6 1.0 nd
50 15.6 6 1.0 nd 2.9 6 0.9 nd

100 23.5 6 0.9 nd 10 6 3 nd
150 10.5 6 0.5 nd 7 6 2 nd

6 25 12.2 6 0.8 197 6 14 1.9 6 0.5 0.18 6 0.07
50 10.1 6 0.5 500 6 200 1.3 6 0.6 1.0 6 0.5

100 15.5 6 0.8 3 6 2
150 12.7 6 1.2 90 6 20 4 6 2 0.44 6 0.13

7 25 54 6 3 1800 6 300 1 6 3 6.3 6 1.1
50 48 6 6 4 6 3

100 150 6 20 10 6 20
150 47 6 4 390 6 110 7 6 9 3.2 6 1.0

8 25 32.3 6 1.4 1900 6 600 0 6 2 4.8 6 1.6
50 17.1 6 1.0 600 6 300 20.9 6 1.3 1.8 6 1.3

100 60 6 6 0 6 7
150 32 6 3 1 6 6

9 25 11.2 6 0.8 nd 1.0 6 0.5 nd
50 13.7 6 0.8 nd 0.9 6 0.9 nd

100 30.2 6 1.4 nd 23 6 4 nd
150 32 6 4 nd 2 6 6 Nd

nd, no available data.
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sediment trap-derived POC fluxes at 25 m (P< 0.05; q 5 0.83; n 5 8), which indicates enhanced particle fluxes
with increasing NPP. Our results also compare well with previous literature values from sediment traps deployed
at 150–175 m north of the Laptev Sea continental margin in August–September during the years 95/96 and 05/

Figure 3. Compilation of 234Th flux data (top) and 234Th-derived POC flux data (bottom) from the Arctic Ocean (236 stations) [Cochran
et al., 1995b; Moran et al., 1997, 2005; Moran and Smith, 2000; Amiel et al., 2002; Coppola et al., 2002; Baskaran et al., 2003; Chen et al., 2003;
Ma et al., 2005; Trimble and Baskaran, 2005; Lepore et al., 2007; Lalande et al., 2007, 2008; Amiel and Cochran, 2008; Yu et al., 2010, 2012; Cai
et al., 2010; Gustafsson and Andersson, 2012; Le Moigne et al., 2015, this study]. Black circles indicate the results obtained in this study. The
depth horizon taken to calculate the POC export fluxes ranges from 25 to 200 m.
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06 (�0.5–2.5 mmol C m22 d21) [Fahl and N€othig, 2007; Lalande et al., 2009] and 234Th-derived POC fluxes in the
central Arctic (Figure 3). Cai et al. [2010] documented very low POC export fluxes (average: 0.2 6 1.0 mmol C
m22 d21, n 5 26) across the deep Arctic, suggesting that they were a consequence of low biological productiv-
ity. Our low POC export flux estimates are in good agreement with the low NPP observed in the present study
within the 234Th time window (in situ, 1 and 2 week estimates;�5 mmol C m22 d21; Table 1).
4.1.3. Relationships With Phytoplankton Community
We did not find any significant relationship between the 234Th data (particulate 234Th activity, 234Th fluxes,
and 234Th-derived POC fluxes) and the phytoplankton size structure at the sampling time, although two corre-
lations were obtained with regards to the phytoplankton composition. The relative biomass of prasino-
phytes_1 was positively correlated with 234Th fluxes (P< 0.05; q 5 0.75; n 5 8) and 234Th-derived POC fluxes
(P< 0.05; q 5 0.77; n 5 7) at 25 m. This suggests that prasinophytes_1 would have contributed significantly to
vertical export fluxes during the late summer in 2012 when picoplankton, and particularly prasinophytes,
were the predominant group in terms of biomass (Prasinophytes_1 and 2, Table 1). Prasinophytes are green
algae that can be usually found in the eukaryotic picoplankon fraction. A molecular study by Metfies et al.
[2016] corroborates the biomass dominance of picoplankton in the upper water column during our expedi-
tion and identifies the prasinophyte Micromonas spp. as its major constituent. Our finding is in line with recent
observations that reveal that small cells are important contributors to POC export fluxes in diverse oceanic
regimes [e.g., Richardson and Jackson, 2007; Lomas and Moran, 2011; Durkin et al., 2015; Mackinson et al., 2015;
Puigcorb�e et al., 2015]. Prasinophytes, including Micromonas spp., are common in the central Arctic [Booth and
Horner, 1997; Sherr et al., 2003; Zhang et al., 2015], and are considered to be among the most abundant photo-
synthetic cells in pan-Arctic waters [Lovejoy et al., 2007]. Genetic analyses in trap samples revealed that prasi-
nophytes contributed to downward fluxes in the Sargasso Sea [Amacher et al., 2013], but to our knowledge,
this has not been observed before in Arctic waters. It is relevant to note that neither genetic nor pigment
techniques inform about whether they sink as single cells or as part of other export pathways.

The pathways by which picoplankton cells can be removed from the ocean surface are fundamentally: (i)
zooplankton grazing and subsequent incorporation into fecal pellets [Waite et al., 2000; Wilson and Steinberg,
2010]; (ii) adhesion into mucous nets formed by gelatinous zooplankton, such as pteropods, and later settling
[Noji et al., 1997]; and (iii) inclusion into marine snow via particle aggregation, which is enhanced by transpar-
ent exopolymer particles (TEP) [Passow, 2002]. Passive sinking of fecal pellets could be a significant pathway
for particle export in the central Arctic where zooplankton exert a strong grazing pressure on algae, prevent-
ing their biomass accumulation and sedimentation [Olli et al., 2007]. Indeed, the copepod food demand dur-
ing our cruise was estimated to be similar to the in situ NPP rates [David et al., 2015], leaving a small fraction
of algae available for direct export. Yet Lalande et al. [2014] estimated that only up to 7.5% of the POC col-
lected by traps at 25 m consisted of fecal pellets. Trap samples also consisted of marine snow, debris, appen-
dicularian houses, animal body parts, and very sticky material, even though their relative importance in POC
content was not quantified (C. Lalande, personal communication, 2016). Copepods clearly dominated the
zooplankton community with regards to abundance, whereas pteropods, ctenophores, and appendicularians,
which are prone to produce mucous, represented less than 3–5% of the total zooplankton abundance either
beneath the ice [David et al., 2015] or within the upper 50 m [Ehrlich, 2015]. However, ctenophores and
appendicularians dominated the under-ice zooplankton biomass at some stations, which could have contrib-
uted notably to the export of mucous (C. David, personal communication, 2016). Moreover, sea-ice algal
aggregates of the centric diatom Melosira arctica and pennate diatoms were observed at all the stations
[Fern�andez-M�endez et al., 2014]. They reached abundances of up to 16 ind/m2 and extraordinary sizes (mean
diameter of 2.1–4.1 cm), although they showed a highly patchy distribution [Katlein et al., 2014]. The aggre-
gates were associated with mucous matrices that increased their stickiness and, at the same time, their pre-
disposition to aggregation [Fern�andez-M�endez et al., 2014]. Indeed, Melosira arctica was intercepted using
sediment traps deployed at 25 m at some stations [Lalande et al., 2014], confirming that it was part of the
sinking pool. Taken all together, sea-ice algal aggregates and zooplankton-derived material might have acted
as carriers of picoplankton cells from the ocean surface to depth (Figure 4b).

4.2. 210Po/210Pb
4.2.1. 210Po and 210Pb Activities
210Po activities were lower than those of 210Pb at every station in the upper 50–150 m, indicating export
driven by sinking particles, while excess 210Po was observed at several depths throughout the upper 400 m
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at stations 2 and 4, suggesting remineralization or particle disaggregation (Figure 2). At stations 2 and 4, the
integrated excess surpassed the integrated deficit at 150 m and below, which can be explained by (i) a pre-
vious large export event that occurred at the study sites and/or (ii) advection of waters that were enriched
in 210Po as consequence of a previous export event [Stewart et al., 2007a]. Thus, the assumption of SS and/
or neglecting the advective term would have added uncertainty to our flux estimates of 210Po. We note that
the 210Po flux estimates are subject to be affected by NSS conditions or advection transport processes to a
larger extent than the 234Th flux estimates due to the longer half-life of 210Po.

Very few studies have investigated the distribution of 210Po and/or 210Pb in the Arctic water column [Moore
and Smith, 1986; Cochran et al., 1995a; Smith and Ellis, 1995; Roberts et al., 1997; Smith et al., 2003; Lepore
et al., 2009; Chen et al., 2012]. The 210Pb and 210Po activities presented here are comparable to the wide
activity range reported by those studies, including shelf and basin areas.

In the Arctic, sea ice intercepts and accumulates atmospheric fluxes of chemical species, such as 210Pb, during
its transit through the ocean [Masqu�e et al., 2007; C�amara-Mor et al., 2011] and, therefore, sea-ice melting may
increase 210Pb activities in surface waters where that occurs [Roberts et al., 1997; Masqu�e et al., 2007; Chen
et al., 2012]. One might wonder whether sea-ice melting may significantly impact the 210Po and 210Pb activities
in seawater and, thus, affect the use of the 210Po proxy. Data on 210Pb and 210Po activities in entire sea-ice
cores collected during the same expedition (results not shown) show that the 210Po/210Pb ratios were �0.5,
indicating 210Pb enrichment in sea ice, and consistent with the dominance of first-year ice [Masqu�e et al.,
2007]. Given the inventories of both isotopes in sea-ice cores, even with complete melting of sea ice, the
210Po/210Pb ratio in the upper 25 m of the water column would have not changed or would have decreased
as much as 10%. Since this change is relatively small, we are confident that the principal cause of the 210Po
deficit in the upper water column was its preferential removal via particle scavenging with respect to 210Pb.
4.2.2. 210Po Export Fluxes
The 210Po export fluxes in the upper 150 m ranged from negligible to 8.2 dpm m22 d21, averaging 3 6 2
dpm m22 d21 (n 5 28, Table 2). The fluxes obtained in this study are very low in comparison to other stud-
ies conducted in other regions of the world ocean [Shimmield et al., 1995; Kim and Church, 2001; Friedrich
and Rutgers van der Loeff, 2002; Murray et al., 2005; Stewart et al., 2007a; Buesseler et al., 2008; Verdeny et al.,
2008; Le Moigne et al., 2013a], which reported fluxes from 5 to >100 dpm m22 d21. However, 210Po fluxes
were significant at every station and at most of the investigated depths, in contrast to 234Th fluxes, which
were only measurable throughout the upper 150 m at three stations (Table 2). Given the half-lives of both
tracers, 210Po would track particle export for the entire productive season, whereas 234Th distribution misses
events that occurred >1 month before sampling. Thus, the more common 210Po depletion than that of
234Th in the upper water column suggests that the magnitude of the particle export fluxes was more impor-
tant before July/August 2012 than in the weeks prior to and during the sampling (Figure 4).

Boetius et al. [2013] revealed the presence of vast deposits of sea-ice algal aggregates on the seafloor at the
majority of the stations, which would have been exported from the ocean surface earlier in the season, par-
ticularly before June at stations 4–6 as suggested by the large body size and fecundity of the deep-sea

Figure 4. Scheme of the magnitude and composition of the particle fluxes in the central Arctic during the (a) early and (b) late summer in 2012 based on results from the present study
and others [Boetius et al., 2013; Lalande et al., 2014; David et al., 2015; Fern�andez-M�endez et al., 2015] (see sections 4.1 and 4.2 for further details). Symbols are not drawn to scale.
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holothurians that fed on the algae. The aggregates were mainly composed of Melosira arctica [Boetius et al.,
2013] that can form long strands hanging from the ice bottom, sometimes up to 6 m long [Melnikov and
Bondarchuk, 1987], allowing a rapid sinking throughout the water column once detached. Boetius et al.
[2013] estimated that algae covered up to 10% of the seafloor by means of high-resolution pictures,
accounting for a median of 750 mmol C m22 (650%). This POC inventory of algae was obtained by applying
a cell volume to carbon ratio (0.15 pg C lm3) and a fixed thickness of the algal cover (1 cm). This supports
the 210Po evidence that the peak of export in the study area occurred in early summer and sheds light on
the composition of a major part of the sinking pool (Figure 4a). It was estimated that diatoms were respon-
sible for at least 45% of the total primary production in 2012 [Boetius et al., 2013], indicating that the phyto-
plankton community varied over the productive season, since diatoms did not contribute much to the Chl-
a biomass during our cruise (�20%, Table 1), when surface waters were silicate-depleted in most of the
study area. Previous studies with sediment traps also revealed that highest fluxes in the central Arctic occur
mainly in June–August when ice algae appear to be significant contributors to the export fluxes [Fahl and
N€othig, 2007; Lalande et al., 2009].
4.2.3. Relationships With Sea-Ice Conditions
There were significant relationships between the sea-ice conditions and the 210Po-derived fluxes. Sea-ice
concentration was positively correlated with both 210Po fluxes (P< 0.01; q 5 0.92; n 5 7) and 210Po-derived
POC fluxes (P< 0.05; q 5 0.91; n 5 6) at 25 m. Indeed, the stations located north of 878N and covered by
multiyear ice (stations 7 and 8) showed the strongest depletion of 210Po within the upper 400 m (Figure 2),
and the highest annual NPP rates (Table 1) and seafloor algal coverage [Boetius et al., 2013]. This suggests
that primary production and particle export were more important under heavy sea-ice conditions than
under partially ice-covered stations and first-year ice, also suggesting that 210Po tracked, to some extent,
the massive algal export that occurred earlier in 2012. On the contrary, at stations with heavy sea-ice condi-
tions we found the minimum in situ NPP rates (Table 1) and 234Th in equilibrium with 238U throughout the
upper water column (Figure 2), indicating low or negligible primary production and particle export fluxes
during the late summer.

The results presented here, combined with those from Boetius et al. [2013], show that the central Arctic
underwent significant changes during the productive season in terms of primary production, phyto-
plankton composition, and export fluxes during the record low of sea ice in 2012. This has implications
for the use of 210Po as a tracer: the depth distribution of total 210Po activity likely changed with time
(NSS conditions) and the sinking material collected during the survey probably did not cause the
observed 210Po depletion in the upper water column. Actually, 210Po activities in large particles collected
at the time of sampling were inversely correlated with 210Po export fluxes at 25 m (P< 0.05; q 5 20.89;
n 5 6). The SS model would tend to smooth out episodic export events that took place earlier in the sea-
son, and hence underestimate the mean 210Po fluxes and 210Po-derived POC fluxes on a seasonal scale.
On the other hand, we measured C/Po ratios in particles that fall in the upper range of previous values
(see review by Verdeny et al. [2009]). Stewart et al. [2007a] showed that C/Po ratios varied according to
the sinking material composition as follows: degraded material> fresh phytoplankton> fecal pellets. In
some instances we also found particulate 210Po/210Pb ratios below one (Table 3), which is inconsistent
with the 210Po deficiency observed in surface waters. Particle types that may potentially explain low
210Po/210Pb ratios could be: those remineralized by chemical and biological processes [Stewart et al.,
2007b]; fecal material [Stewart et al., 2005; Rodriguez y Baena et al., 2017]; picoplankton aggregates
[Stewart et al., 2010]; substrates rich in transparent exopolymer particles [Quigley et al., 2002]; and sea-
ice drafted material incorporated over the shelves, such as sea-ice sediments (SIS), and enriched in 210Pb
via atmospheric input (210Po/210Pb ratios in SIS collected during the expedition were �1, results not
shown). If the sinking pool responsible for 210Po scavenging had different C/Po ratios with respect to
that collected at the sampling time, the 210Po-derived POC fluxes obtained in this study would not be
fully representative of the fluxes that occurred in the productive season in 2012.

4.3. Export Efficiency
We have estimated the export efficiency by dividing the POC export fluxes derived from 234Th and 210Po at
25 m (i.e., �bottom of the euphotic zone) by different estimates of NPP that encompass daily, weekly, and
annual time scales (Table 5).
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Considering the in situ NPP rates, the
export efficiencies varied widely over the
study site, from 0 to >100%, averaging
50 6 50% (n 5 8) and 60 6 40% (n 5 7) for
the 234Th and 210Po proxies, respectively.
The export efficiencies calculated using
the fluxes measured with sediment traps
[Lalande et al., 2014] was >100% at six out
of eight stations. Export efficiencies over
100% suggest that primary production
that occurred earlier in the season contrib-
uted to the export fluxes measured (i.e.,
temporal decoupling between production
and export). In order to cover longer time
scales of NPP, we have also used esti-
mates that integrate 1 and 2 weeks before
sampling and the entire productive sea-
son (see section 3.1.2). The increase in
daily NPP observed between the in situ
and the weekly estimates at stations 3, 4,
7, and 8, only changed significantly the
export efficiency at station 4 (210Po proxy),
obtaining estimates of �70% (Table 5).
Export efficiencies over 100% were still
observed in several instances, indicating
that the lag between production and

export was longer than 2 weeks. On the contrary, the export efficiencies decreased by about 40% when
applying the annual NPP estimates (234Th: 30 6 40%, n 5 9; 210Po: 40 6 30%, n 5 7) and were mostly below
100%, except for 234Th at station 1. In contrast to 234Th, 210Po fluxes and 210Po-derived POC fluxes at 25 m

showed a positive correlation with
the integrated deficits of nitrate
found in the upper water column
[Fern�andez-M�endez et al., 2015]
(P< 0.05; q 5 0.83; n 5 6), which
are used to estimate the annual
new NPP rates [e.g., Codispoti et al.,
2013]. This confirms that the 210Po
proxy covered the productive sea-
son better than 234Th and suggests
that consumption of nitrate
resulted in the increase in export
production. Thus, the 210Po-derived
POC fluxes and annual NPP esti-
mates can be useful to assess the
seasonal strength of the biological
pump, allowing to overcome the
temporal decoupling between pro-
duction and export, which is espe-
cially long in Arctic waters
according to a global biogeochemi-
cal model presented by Henson
et al. [2015].

The export efficiencies based on
the annual NPP and the 210Po-

Table 5. Export Efficiency According to the 234Th and 210Po Proxies Esti-
mated Using Different Estimates of Daily NPP (In Situ, One Week, and Two
Weeks Before Sampling and Annual New Primary Production; See Text for
Further Details)

Station

Export Efficiency (%)

In Situ One Week Two Weeks Annual

Th Proxy
1a >100 >100 >100 >100
2b 30 6 40 40 6 40 30 6 40 20 6 20
3 0 0 0 0
4 0 0 0 0
5 90 6 20 >100 >100 77 6 18
6 80 6 20 100 6 30 80 6 20 60 6 17
7 >100 >100 >100 10 6 20
8 0 0 0 0
9 nd nd nd 13 6 6
Po Proxy
1a 37 6 12 53 6 17 50 6 16 37 6 12
2b 64 6 16 74 6 19 67 6 17 36 6 9
3 5 6 11 3 6 6 3 6 6 3 6 7
4 >100 70 6 20 80 6 20 90 6 30
5 nd nd nd nd
6 8 6 3 9 6 4 8 6 3 6 6 2
7 >100 >100 >100 53 6 9
8 >100 >100 >100 48 6 16
9 nd nd nd nd

aPOC fluxes were measured at 15 m instead of 25 m.
bPOC fluxes were measured at 50 m instead of 25 m.
The values in italics have relative uncertainties �100%.
nd, no available data.

Figure 5. 210Po-derived POC export fluxes at 25 m versus annual new primary produc-
tion reported in Fern�andez-M�endez et al. [2015]. Solid lines indicate the export
efficiency.
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derived POC fluxes are illustrated in Figure 5. Only two locations showed export efficiencies <10% (sta-
tions 3 and 6; Table 5), which are those typically found in the world ocean [Buesseler, 1998]. In this line,
Cai et al. [2010] reported export efficiencies <6% in the central Arctic using historical measurements of
primary production. In contrast, export efficiencies >30% (average: 50 6 20%, n 5 5) were found at the
other stations, which are in good agreement with those reported by Gustafsson and Andersson [2012] in
the Eurasian Basin (average: 34 6 8%, n 5 3) and Chen et al. [2003] in the Canada Basin (26%, n 5 1)
applying 234Th-derived POC fluxes and in situ NPP rates. Our estimates are also similar to the 234Th-
derived export efficiencies of �30–40% reported for Chukchi shelf, slope, and basin stations in summer
[Moran et al., 2005; Lepore et al., 2007]. Although only a limited set of observations of export efficiency is
available in the central Arctic, overall they point to high export efficiencies as also indicated by Henson
et al. [2015]. The assessment of the export efficiency in the central Arctic deserves more attention to bet-
ter understand its role as an export regime in a climate change framework. Observations of strong
aggregation and rapid algal falls in the central Arctic [Boetius et al., 2013; Katlein et al., 2014] suggest an
export system that works differently than in most of the world ocean.

5. Conclusions

We have used concurrently the 234Th/238U and 210Po/210Pb proxies to estimate POC fluxes in the central Arc-
tic during the record sea-ice minimum in 2012. The main findings of the present work are:

1. 234Th reveals that POC fluxes at the bottom of the euphotic zone were very low (2 6 2 mmol C m22 d21)
in August/September, which is in good agreement with results obtained using sediment traps (3 6 3
mmol C m22 d21) deployed at the same locations [Lalande et al., 2014]. The positive relationships found
between prasinophytes_1 and 234Th and 234Th-derived POC fluxes suggest that picoplankton contrib-
uted significantly to downward fluxes in late summer.

2. In contrast to 234Th, the upper water column was depleted in 210Po over the entire study area, indicating
that particle export fluxes were higher before July/August than in the weeks prior to and during the
survey.

3. The positive relationships obtained between sea-ice concentration and 210Po and 210Po-derived POC
fluxes show that particle sinking was greater under heavy sea-ice conditions than under partially ice-
covered areas. Further, the strongest 210Po deficits in the water column coincided with the highest sea-
floor coverage of algae reported by Boetius et al. [2013], suggesting that 210Po tracked, to some extent,
the massive algal export that occurred earlier in the season.

4. Although the POC fluxes were low, a large fraction of primary production (>30%) was exported at the
base of the euphotic zone in most of the study area, according to 210Po-derived POC fluxes and annual
NPP estimates. Seasonal estimates of primary production and export would be very helpful in character-
izing the role of the Arctic biological pump in the context of climate change.

We encourage future studies applying radionuclide proxies to consider NSS conditions and follow the trend
of C/Th and C/Po ratios with time to better constrain the POC fluxes in the Arctic. Further, the simultaneous
use of sediment traps would allow the determination of the particle flux composition, which has been
pointed out as a crucial factor shaping the biological pump efficiency [e.g., Mackinson et al., 2015; Puigcorb�e
et al., 2016; Roca-Mart�ı et al., 2016].
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